

PROJECT APPLICATION IOWA CLEAN AIR ATTAINMENT PROGRAM (ICAAP)

Applicant Agency: City of Epworth			E-mail:epwort	h@you	sq.net
Contact Person (Name and Title): Janet Berger, City Cle	erk				
191 Jacoby Drive E.; PO Box Complete Mailing Address:	266				
Epworth IA	Stree	t Address and/or Box Nur	nber	220	
	5204		563-876-3		
City Sta	te	ZIP Code		Daytime I	Phone
If more than one agency or organization is involved in this telephone number of the second agency. (Attach an additional					ailing address, and
Co-Applicant Agency:			E-mail:		
Public Agency, Non-Profit Organization ¹ , For-Pr	rofit Organiz	ation ¹ , or Individual ¹			
Contact Person (Name and Title):		n an than an t-ann an that tha tha tha tha an tha			
		Street Address and/or Bo	ox Number		
Complete Mailing Address:					
				-	
City Sta	ite	ZIP Code		Daytime I	Phone
Project Information:					
Project Title ² : Center Avenue & Jacoby Drive Roundat	bout				
Project Description (including length, if applicable):					
Construction of a single-lane roundabout at the ex & Jacoby Drive. Project will include cross-walk impro cyclists crossing Center Avenue.	isting tv oveme	vo-way stop cont nts to aid in impr	crolled inters oving safety	ection o of pede	of Center Avenue estrians and
*Project priority (1 = highest priority): $\frac{1}{(a \text{ spons})^3}$ numerical rank or priority to each application.) ³ *Assign the proposed project to one or more of the following ca		itting multiple applic (check one or more)		funding c	cycle must assign a
Transportation-Related Project in the State Implementation Plan	n (SIP)	Shared-Ride			
Transportation Control Measure (TCM)		Bicycle or	edestrian Facility	or Progra	m (select one)
Traffic Flow Improvement (Intersection, Signalization, Other)		Intermodal Freigh	nt		
Planning and Project Development		Passenger			
Travel Demand Management (TDM)		Alternative Fuels			
☐ Transit-Related Improvement		Vehicle Inspectio	n and Maintenar	nce Progra	m
		Outreach Activity	(Education, Adv	ertising, or	Technical Assistance)
*Is the project consistent with the State Implementation Plan for ai	ir quality	or non-attainment are	eas? 🗌 Yes	🗌 No	□ Not Applicable
*Is the project consistent with the MPO's local conge	stion ma	nagement plan?	🗌 Yes	🗌 No	🗌 Not Applicable
*Is the project consistent with the MPO RPA Statewide	Long-Rar	ge Transportation Pla	an? 🗌 Yes	🗌 No	□ Not Applicable
Notes: ¹ Requires public agency as co-sponsor of application. ² The term "project" means any ICAAP infrastructure or program	nronosal				

³The Iowa Department of Transportation will use the priority ratings to reflect the sponsor.

Project Costs (an itemized breakdown must be included on an attached sheet):

Total Cost:

Applicant Match

Iowa Clean Air Attainment Program Fund Request:

\$1,352,528.00 \$852,528.00 \$500,000.00

Projects with a private for-profit co-applicant require a minimum 50 percent applicant match; all other projects require a minimum 20 percent applicant match.

	List All Applicant Match Sources	Amount	Assured or Anticipated (Date Anticipated)
1.	TSIP Site-Specific Project Grant	\$500,000.00	January 31, 2025
2.			
3.			

Are any state funds involved in this project?

If Yes, please explain the source and conditions:

City has submitted at site specific TSIP application on 8/15/2024 for the roundabout at this location; waiting to hear back on whether funding will be approved in early 2025.

No

Are any other federal funds involved in this project? Yes

If Yes, please explain the source and conditions:

Estimated Project Development Schedule:

Design:	Start Date:	March 01, 2025	Completion Date: September 01, 202	25
Land Acquisition:	Start Date:		Completion Date:	
Construction:	Start Date:	April 01, 2026	Completion Date: July 01, 2026	
Has any part of this project If Yes, please explain:	been started? 🗌	Yes No		

How do you plan to measure the success of this project?

Updated traffic counts with LOS calculations at the intersection and pedestrian counts on walkway.

Required Documentation and Narrative Information

The following documents and narratives must be submitted with this application. In the upper right corner of each document or narrative write the corresponding letter shown below.

- A. A NARRATIVE assessing existing congestions/air quality conditions, outlining the concept of the proposed project, and providing adequate project justification. How will this project reduce congestion, reduce travel or single occupant vehicle usage, and/or improve air quality? Which transportation-related pollutant(s) are being addressed: carbon monoxide, ozone, or particulate matter (PM)?
- B. A DETAILED MAP identifying the location of the project and clearly differentiating the subject project from any past or future project phases.
- C. An ITEMIZED BREAKDOWN of the total project costs. This documentation does not need to be a detailed, line-item type of estimate. However, it must accomplish two objectives: First, it must show the method by which the cost estimate was prepared; and second, it must enable a reviewer to determine if the cost estimate is reasonable. The manner in which these objectives are achieved may vary widely depending on the type, scope, and complexity of the project. Absent a fully itemized list of costs, some general guidelines for possible methods of estimating each type of project cost are provided on Attachment A.
- D. A TIME SCHEDULE for the total project development.
- E. An OFFICIAL CERTIFICATION from the applicant's governing body (authority) that it shall:
 - (1) commit the necessary local matching funding for project implementation and
 - (2) upon project completion, be responsible for adequately maintaining and operating the project for public use during the project's useful life.
- F. An ADOPTED FORMAL RESOLUTION from the appropriate MPO or RPA declaring the sponsor's proposed project or program conforms to the MPO's or RPA's regional transportation planning process. (For MPOs, the project or program must be identified in the fiscally constrained transportation plan and, if applicable, the congestion management plan in TMAs.)
- G. CALCULATIONS for vehicle emission reductions and total project cost-effectiveness for the targeted pollutants. Project applicant must show through a quantitative analysis how many kilograms of pollutant will be reduced (CO, VOC, NOx, and, if applicable, PM). Project sponsor must calculate the cost-effectiveness of the project by: Dividing the total annualized project cost by the number of kilograms per year of pollutant reduced (\$ per kg). Applicant must also show all assumptions and source of data used to calculate the estimates. The applicant must use the most current vehicle emission factors developed by the lowa DNR and consistent with the U.S. EPA's MOBILE 6.2 air quality model. These emission factors are periodically updated and may be obtained from the lowa DOT's ICAAP website at: https://iowadot.gov/systems_planning/Grant-Programs/lowa-Clean-Air-Attainment-Program-ICAAP.
- H. Completed MINORITY IMPACT STATEMENT attached to application.

The award of ICAAP funds; any subsequent funding or letting of contracts for design, construction, reconstruction, improvement, or maintenance; and the furnishing of materials for this project shall not involve direct or indirect interest of any state, county, or city official, elective or appointive. All of the above are prohibited by Iowa Code 314.2, 362.5, or 331.342. Any award of funding or any letting of a contract in violation of the foregoing provisions shall invalidate the award of ICAAP funding and authorize a complete recovery of any funds previously disbursed.

Certification

To the best of my knowledge and belief, all information included in this application is true and accurate, including the commitment of all physical and financial resources. This application has been duly authorized by the participating local authority. I understand the attached **official endorsement(s)** binds the participating local governments to assume responsibility for adequate maintenance of any new or improved facilities.

If ICAAP funding assistance is approved for the project described in this application, I understand that an executed contract between the applicant and the lowa DOT is required before such funding assistance can be authorized for use in implementing the project.

Representing the City of Epworth

(Name of Applicant's Governing Authority)

Signature

Date

Typed Name and Title (Governing Authority Official) Date

Minority Impact Statement

Pursuant to 2008 Iowa Acts, HF 2393, Iowa Code 8.11, all grant applications submitted to the State of Iowa that are due beginning Jan. 1, 2009, shall include a Minority Impact Statement. This is the state's mechanism for requiring grant applications to consider the potential impact of the grant project's proposed programs or policies on minority groups.

Please choose the statement(s) that pertains to this grant application. Complete all the information requested for the chosen statement(s). Submit additional pages as necessary.

The proposed grant project programs or policies could have a disproportionate or unique positive impact on minority persons.
minority persons.

Describe the positive impact expected from this project.

The cross-walk and transition areas of the sidewalks/multi-use trail will be enhanced to promote safety in crossing Center Avenue.

Indicate which gr	oups are impacted.			
🗌 Women	🖌 Persons with a disability	Blacks	🗌 Latinos	🗌 Asians
🗌 Pacific Isla	nders 🔲 American Indians	🗌 Alaskan N	lati∨e Americans	Other

The proposed grant project programs or policies could have a disproportionate or unique **negative** impact on minority persons.

Describe the negative impact expected from this project.

Present the rationale for the existence of the proposed program or policy.

Provide evidence of consultation with representatives of the minority groups impacted.

Indicate	which groups a	re impacted.			
[Women	Persons with a disability	Blacks	Latinos	🗌 Asians
[Pacific Islan	ders 🔲 American Indians	🗌 Alaskan Na	ti∨e Americans	Other

The proposed grant project programs or policies are not expected to have a disproportionate or unique impact on minority persons.

Present the rationale for determining no impact.

I hereby certify that the information on this form is complete and accurate, to the best of my knowledge.

Name

Title

Definitions

"Minority Persons," as defined in Iowa Code 8.11, means individuals who are women, persons with a disability, Blacks, Latinos, Asians or Pacific Islanders, American Indians, and Alaskan Native Americans.

"Disability," as defined in Iowa Code 15.102, subsection 7, paragraph "b," subparagraph (1): *b*. As used in this subsection:

(1) "Disability" means, with respect to an individual, a physical or mental impairment that substantially limits one or more of the major life activities of the individual, a record of physical or mental impairment that substantially limits one or more of the major life activities of the individual, or being regarded as an individual with a physical or mental impairment that substantially limits one or more of the major life activities of the individual.

"Disability" does not include any of the following:

- (a) Homosexuality or bisexuality.
- (b) Transvestism, transsexualism, pedophilia, exhibitionism, voyeurism, gender identity disorders not resulting from physical impairments or other sexual behavior disorders.
- (c) Compulsive gambling, kleptomania, or pyromania.
- (d) Psychoactive substance abuse disorders resulting from current illegal use of drugs.

"State Agency," as defined in Iowa Code 8.11, means a department, board, bureau, commission, or other agency or authority of the State of Iowa.

REQUEST FOR IOWA'S CLEAN AIR ATTAINMENT PROGRAM (ICAAP)

ATTACHMENT A

Itemized breakdown of total project costs guidelines.

Construction costs

These may be based on historical averages for entire projects of similar size and scope. Examples include:

- Typical cost per mile of trail (e.g., \$200,000 per mile for moderate terrain and limited number of structures).
- Typical cost per square foot of bridge deck.
- Typical cost per square foot of fiber optic traffic signal interconnect cable (i.e., \$178,000 per mile).
- Typical cost per traffic signal upgrade (i.e., \$163,000 per lump sum signal bid item).

Design/Inspection costs

These may be estimated based on the following typical percentages of construction costs, such as:

- 8 to 10 percent for preliminary up through final design and letting activities.
- 12 to 15 percent for construction inspection activities.

Right of way acquisition costs

These may be estimated based on:

- Impact and description of impact.
- Typical cost per square foot for permanent right of way.
- Typical cost per square foot for temporary easements.

Utility and railroad costs

These may be estimated based on:

- Impact and description of impact.
- Typical cost per linear foot of relocated or reconstructed facility (i.e., track, pipe, electrical lines).
- Typical cost per installation (i.e., railroad switches, utility poles, transformers, control boxes).

Indirect costs

If indirect costs are involved (e.g., wages):

- Estimated hours.
- Estimated hourly rate, salary.
- Estimated fringe, direct.
- Other direct cost estimate.
- Other indirect cost estimate.

Resolution # 22 - 2024

A RESOLUTION AFFIRMING SUPPORT FOR THE

EPWORTH

Roundabout Project at Jacoby Drive & Center Avenue

Whereas, the City of Epworth intends to submit an application to the Iowa Clean Air Attainment Program;

NOW, THEREFORE, BE IT RESOLVED BY THE CITY COUNCIL OF THE CITY OF EPWORTH, IOWA, as follows:

- 1. The City of Epworth shall commit funds in a minimum of 20% of the total project costs of the Roundabout Project at Jacoby Drive & Center Avenue.
- 2. The City of Epworth shall upon completion, assume responsibility for adequate maintenance and operation of the project for public use during the project's useful life.

Passed and approved this <u>//</u> day of <u>September</u>, 2024

Sandra M. Gassman

Sandra Gassman, Mayor

Attest Janet Berger

Janet Berger, City Clerk

ICAAP Application

City of Epworth – Center Avenue & Jacoby Drive Roundabout

<u>Narrative</u>

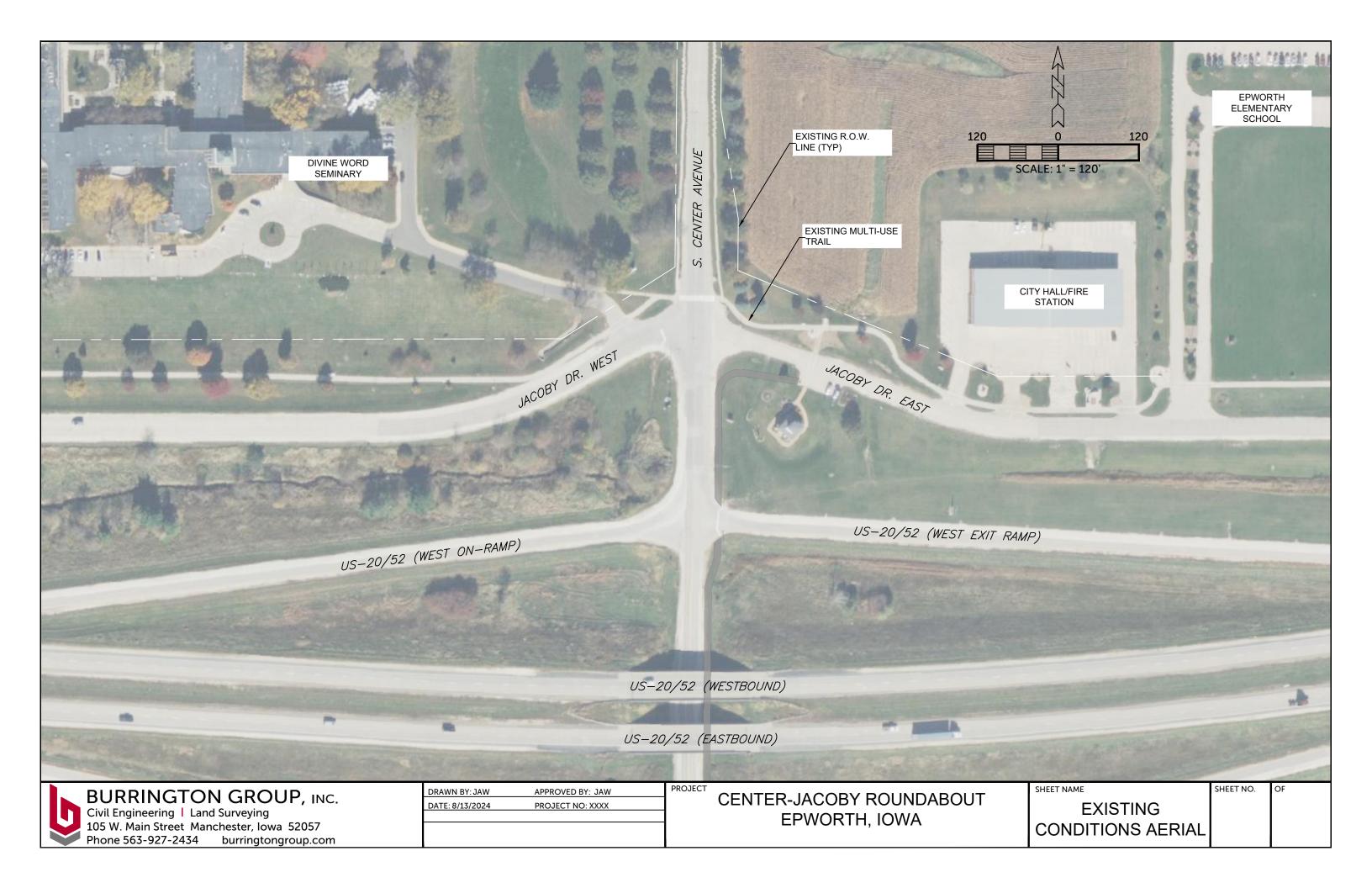
The City of Epworth has expressed concerns about safety and congestion at the intersection of South Center Avenue and Jacoby Drive with regards to pedestrian safety and congestion during morning and afternoon peak hours of school traffic and is looking for alternatives to address the concerns. The City of Epworth had a TEAP Traffic and Safety Study completed in December of 2023. A copy of this study can be found at the following link:

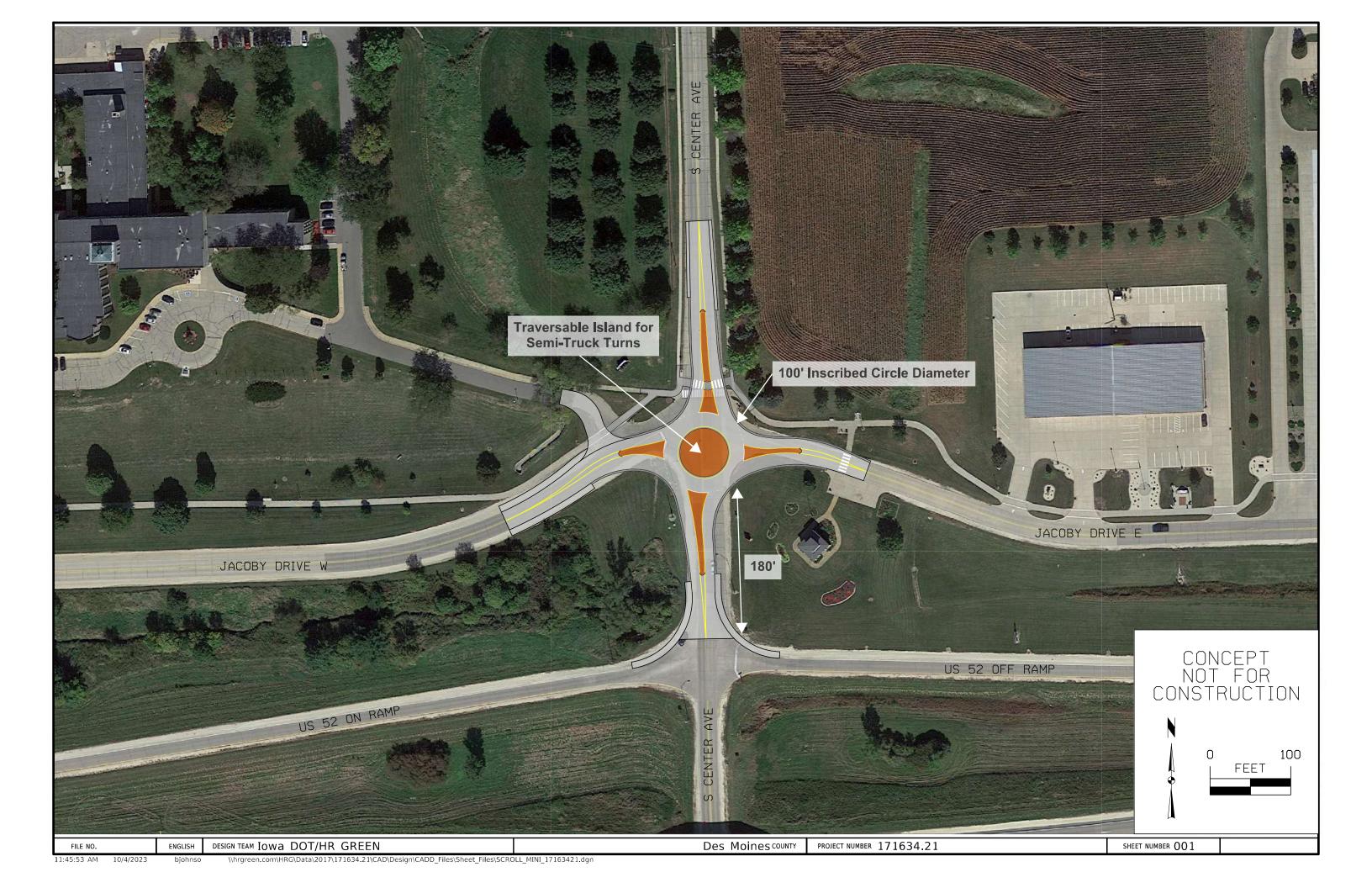
https://burringtongroup.sharefile.com/d-s20f168a50fed40d785c35f49b18f8a62

The intersection of Center Avenue and Jacoby Drive is a two-way stop controlled, four-legged intersection located approximately 230' north of the westbound exit ramp from US-20/52. South Center Avenue (through legs) has a posted speed limit of 25 mph with a two-lane rural cross section with approximately 24-foot wide northbound lane and a 12-foot wide southbound lane. Jacoby Drive (stop controlled legs) has a posted speed limit of 35 mph with a two-lane rural cross section with approximately 11-foot lanes with shared through/left-turn/right-turn movements at each approach. The stop controlled legs of Jacoby drive are at approximately a 75-degree angle to Center Avenue. There is a striped pedestrian crossing across South Center Avenue on the north side of the Jacoby Drive intersection which is part of the existing shared-use path system within the City.

At the time of this application, there is a Casey's gas station/convenience store under construction to be located at the SE corner of Placid Road (Center Avenue) and US-20/52 which is tentatively scheduled to open in November of 2024. The addition of this commercial use south of US-20/52 will likely have an impact of increasing the number of vehicles travelling through this intersection.

The City's desired improvement to address the safety concerns is to install a single lane roundabout at this intersection. As indicated in the TEAP study, the roundabouts help improve traffic flow by allowing the continuous movement traffic while forcing the vehicles entering the intersection to slow down. The single lane roundabout was chosen due the anticipated traffic counts and its ability to operate at an anticipated LOS A while having available space to queue the 95th percentile queues for the peak hours. The implementation of the roundabout would help smooth vehicle operations along Center Avenue between US-20/52 and Jacoby Drive. This would in turn reduce the delay time and emissions from vehicles at the Jacoby drive stop controlled intersections. The improvements would be targeting reduction in travel time (specifically idle time), carbon monoxide and ozone. The targeted improvement would also have the effect of enhancing the pedestrian crossing of Center Avenue which would in-turn promote bicycle and or walking trips instead of vehicle trips.


Anticipated Project Schedule


Roundabout

- Design Spring 2025
- Bidding February 2026
- Construction Spring/Summer 2026

Shared-Use Trail (Approved TAP Funded Project)

- Design November 2024
- Bidding June 2025 (earliest likely)
- Construction Summer/Fall 2025

PRELIMINARY COST ESTIMATE

Center Avenue Jacoby Drive Roundabout Improvements Project EPWORTH, IOWA

ITEM				UNIT	
NO.	DESCRIPTION	QUANTITY	UNITS	COST	TOTAL
1	Excavation, CL 10 (waste)	2000	C.Y.	14.00	\$ 28,000
2	PCC Pavement Removal	4100	S.Y.	10.00	\$ 41,000
3	PCC Driveway Removal	200	S.Y.	10.00	\$ 2,000
4	PCC Sidewalk Removal	300	S.Y.	8.00	\$ 2,400
5	8" PCC Concrete Pavement	3680	S.Y.	90.00	\$ 331,200
6	8" PCC Concrete Truck Pavement (colored)	820	S.Y.	110.00	\$ 90,200
7	4" PCC Sidewalk	90	S.Y.	55.00	\$ 4,950
8	5" PCC Sidewalk	200	S.Y.	60.00	\$ 12,000
9	8" PCC Sidewalk	15	S.Y.	100.00	\$ 1,500
10	Detectable Warnings	40	S.F.	80.00	\$ 3,200
11	PCC Driveway Replacement (8")	265	S.Y.	85.00	\$ 22,525
12	Special Backfill (6")	2300	Ton	30.00	\$ 69,000
13	3" Breaker (12" Thick)	3200	Ton	25.00	\$ 80,000
14	Erosion Stone	15	Ton	50.00	\$ 750
15	Granular Shoulders, Type A	6	STA	300.00	\$ 1,800
16	Geogrid	4500	S.Y.	6.00	\$ 27,000
17	Subdrain, 6", Case B, Type 1	1500	L.F.	15.00	\$ 22,500
18	Intake Removal	4	Each	1,000.00	\$ 4,000
19	Storm Sewer Removal	320	L.F.	15.00	\$ 4,800
20	SW-507 Intake	6	Each	5,500.00	\$ 33,000
21	SW-509 Intake	2	Each	7,500.00	\$ 15,000
22	SW-511 Intake	1	Each	4,000.00	\$ 4,000
23	15" RCP Storm Sewer	60	L.F.	80.00	\$ 4,800
24	18" RCP Storm Sewer	140	L.F.	100.00	\$ 14,000
25	24" RCP Storm Sewer	220	L.F.	120.00	\$ 26,400
26	18" RCP Apron	1	Each	3,000.00	\$ 3,000
27	24" RCP Apron	1	Each	3,500.00	\$ 3,500
28	Sanitary MH Adjustment - Major	2	Each	4,500.00	\$ 9,000
29	Removal of Sign	6	Each	200.00	\$ 1,200
30	Type A Sign	12	Each	500.00	\$ 6,000
31	Striping	1	L.S.	15,000.00	\$ 15,000
34	Soil Erosion Control	1	L.S.	20,000.00	\$ 20,000
35	Traffic Control	1	L.S.	12,000.00	\$ 12,000
36	Topsoil Import & Spreading	350	C.Y.	50.00	\$ 17,500
37	Permanent Seeding, Fertilizing and Mulching, Type	0.8	Acre	8,500.00	\$ 6,800
38	Mobilization	1	L.S.	50,000.00	\$ 50,000
		ubtotal Center A		,	\$ 990,025

PRELIMINARY COST ESTIMATE

Center Avenue Jacoby Drive Roundabout Improvements Project EPWORTH, IOWA

ITEM NO.	DESCRIPTION	QUANTITY	UNITS	UNIT COST	TOTAL
			Cont	ingency (15%)	\$ 148,500
		Total Pre	liminary Con	struction Cost	\$ 1,138,525
	OTHER PROJECT COSTS				
	Lighting	1	L.S.	30,000.00	30,000
	Engineering Design				\$ 85,000
	Construction Engineering	10.0%			99,003
					-
				er Project Costs	214,003
		PHAS	E 1 - TOTAL F	ROJECT COSTS	\$ 1,352,528
	Anticipated Funding Source Breakdown:				
	ICAAP Grant (submitting application 9/2024)	\$ 852,528.00			
	TSIP Site-Specific Project Grant	\$ 500,000.00			

ICAAP Applicatiion Center Avenue Jacoby Drive Roundabout Epworth, IA

Pollutant Reduction Calculation

Polllutant	Idle Composite		20 n	nph	Del	ta	\$/kg red	uction
	£	۶/mi	g/mi		(g)	(kg)		
CO	41.195	4736395.125	13.441	1545379	3191016	3191.016	\$	17.27
VOC	13.374	1537675.65	1.993	229145.2	1308530	1308.53	\$	42.11
Nox	3.001	345039.975	1.883	216497.9	128542.1	128.5421	\$	428.66

Note: Pollutant numbers taken from Iowa DOT emission factors taken from Mobile 6.2

Improvements/Traffi	ic Summary at S	Stop Control Leg	
Length of Improvement	nts	0.2 mile	
AADT Jacoby	1575 vpd	365 574875 114975 mi/day	
*note, AADT is 50% of	f traffic which w	ould be stopped at stop sign assuming equal distribution of tr	affic from 2023 traffic counts
Annualized Cost Calo	culations		
Service life of Rounda			
	ibout	25 Years	

Annualized Cost (25 years)	\$ 54,101.12	Construction
	\$ 1,000.00	Annual Maintenance (plowing, salting, striping, etc)
	\$ 55,101.12	

Idle.txt

2008 Emission factors @ 2.5mph on arterial roadways

Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (All)	HDGV	LDDV	LDDT	HDDV	MC	All Vel
VMT Distribution: Fuel Economy (mpg):	0.3571 24.0	0.3697 18.6	0.1268 14.3	17.3	0.0414 9.6	0.0012 31.8	0.0019 20.0	0.0957 7.2	0.0063 50.0	1.000 16.
Composite Emission Fa			47 330	12 420	45 530	1 620	2 570	1 250	0 00	14 66
Composite VOC : Composite CO :	20.028 49.67	12.135 39.68	17.230 58.08	13.436 44.38	15.578 60.42	1.639 4.675	2.570 5.234	1.358 10.109	8.99 97.80	$14.66 \\ 43.86$
Composite NOX :	2.154	2.036	2.686	2.202	2.235	2.163	2.610	13.382	1.04	3.24
Composite CO2 :	369.9	475.8	619.2	512.4	927.8	320.2	510.0	1419.7	177.4	563.19
		100717	LDGT34	LDGT	HDGV	LDDV	LDDT	HDDV	МС	All Ve
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	>6000	(A11)						
VMT Distribution:	0.3571	0.3697	0.1268		0.0414	0.0012	0.0019	0.0957	0.0063	1.000
Composite Emission Fa	actors (g/m	i):								0 000
Lead:	0.0000	0.0000	0.0000	0.0000	0.0000				0.0000	0.000
GASPM: ECARBON:	0.0038	0.0039	0.0051	0.0042	0.0446	0.0862	0.0768	0.1297	0.0142	0.005
OCARBON:						0.0243	0.1105	0.0633		0.006
504:	0.0005	0.0006	0.0007	0.0006	0.0011	0.0002	0.0002	0.0009	0.0002	0.000
Total Exhaust PM:	0.0043	0.0046	0.0058	0.0049	0.0457	0.1106	0.1875	0.1939	0.0144	0.025
Brake:	0.0053	0.0053	0.0053	0.0053	0.0053	0.0053	0.0053	0.0053	0.0053	0.005
Tire:	0.0020	0.0020	0.0020	0.0020	0.0022	0.0020	0.0020	0.0065	0.0010	0.002
Total PM:	0.0117	0.0119	0.0131	0.0122	0.0533 0.0170	$0.1180 \\ 0.0030$	$0.1948 \\ 0.0048$	0.2058 0.0132	0.0207 0.0033	0.032
SO2: NH3:	0.0068 0.1017	0.0087 0.1010	0.0114 0.0970	0.0094 0.1000	0.0451	0.0068	0.0048	0.0270	0.0113	0.009
009 Emission factors	@ 2.5mph o	n arterial	roadways							
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (A11)	HDGV	LDDV	LDDT	HDDV	мс	A]] Ve
VMT Distribution:	0.3443	0.3790	0.1300		0.0414	0.0011	0.0020	0.0959	0.0062	1.000
<pre>Fuel Economy (mpg):</pre>	24.0	18.6	14.3	17.3	9.6	32.9	20.0	7.2	50.0	16.
Composite Emission Fa	actors (g/m	i):	16 200	12 240	12 507	1 639	2 512	1 272	0 00	12 27
Composite VOC :	18.422	10.960	16.390	12.346	13.567	1.628	2.512	1.273	8.98	13.37
Composite VOC : Composite CO :	18.422 47.77	10.960 37.58	54.75	41.96	46.50	4.660	5.173	8.760	97.80	41.19
Composite VOC :	18.422	10.960								41.19 3.00
Composite VOC : Composite CO : Composite NOX :	18.422 47.77 2.033 369.2 LDGV	10.960 37.58 1.893 476.4 LDGT12 <6000	54.75 2.525 619.8 LDGT34 >6000	41.96 2.054 513.0 LDGT (A11)	46.50 1.997 926.1 HDGV	4.660 2.115 309.4 LDDV	5.173 2.525 510.0	8.760 12.085 1417.8 HDDV	97.80 1.04 177.4 MC	41.19 3.00 565.07 All Ve
Composite VOC : Composite CO : Composite NOX : Composite CO2 : Vehicle Type:	18.422 47.77 2.033 369.2	10.960 37.58 1.893 476.4	54.75 2.525 619.8 LDGT34	41.96 2.054 513.0 LDGT	46.50 1.997 926.1	4.660 2.115 309.4	5.173 2.525 510.0	8.760 12.085 1417.8	97.80 1.04 177.4	13.37 41.19 3.00 565.07 All Ve 1.000

Page 1

			Idle.txt							
GASPM:	0.0037	0.0038	0.0049	0.0041	0.0392				0.0142	0.0051
ECARBON:						0.0821	0.0748	0.1105		0.0108
OCARBON:						0.0232	0.1076	0.0537		0.0054
504:	0.0005	0.0006	0.0006	0.0006	0.0011	0.0002	0.0002	0.0009	0.0002	0.0006
Total Exhaust PM:	0.0043	0.0044	0.0055	0.0047	0.0403	0.1054	0.1827	0.1651	0.0144	0.0220
Brake:	0.0053	0.0053	0.0053	0.0053	0.0053	0.0053	0.0053	0.0053	0.0053	0.0053
Tire:	0.0020	0.0020	0.0020	0.0020	0.0022	0.0020	0.0020	0.0065	0.0010	0.0024
Total PM:	0.0116	0.0118	0.0129	0.0121	0.0479	0.1127	0.1900	0.1769	0.0207	0.0297
S02 :	0.0067	0.0087	0.0114	0.0094	0.0170	0.0029	0.0048	0.0132	0.0033	0.0091
NH3 :	0.1017	0.1012	0.0979	0.1003	0.0451	0.0068	0.0068	0.0270	0.0113	0.0907

	Areawide_3-40mph_2008.txt									
20mph Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (A11)	HDGV	LDDV	LDDT	HDDV	МС	All Veh
VMT Distribution: Fuel Economy (mpg):	0.3571 24.0	0.3697 18.6	0.1268 14.3	17.3	0.0414 9.6	0.0012 31.8	0.0019 20.0	0.0957 7.2	0.0063 50.0	1.0000 16.3
	ctors (g/m 2.410 13.93 1.102 369.9	i): 1.697 13.51 1.115 475.8	2.610 18.79 1.484 619.2	1.930 14.86 1.209 512.4	2.280 16.69 2.665 927.8	0.912 2.044 1.266 320.2	1.491 2.442 1.537 510.0	0.607 3.076 8.030 1419.7	2.86 15.60 0.99 177.4	1.993 13.441 1.883 563.19
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (A11)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.3571	0.3697	0.1268		0.0414	0.0012	0.0019	0.0957	0.0063	1.0000
Composite Emission Fa Lead: GASPM: ECARBON: OCARBON: SO4: Total Exhaust PM: Brake: Tire: Total PM: SO2: NH3:	lctors (g/m) 0.0000 0.0038 0.0005 0.0043 0.0053 0.0020 0.0116 0.0068 0.1017	i): 0.0000 0.0040 0.0006 0.0045 0.0053 0.0020 0.0119 0.0087 0.1010	0.0000 0.0051 0.0006 0.0058 0.0053 0.0020 0.0131 0.0114 0.0970	0.0000 0.0043 0.0006 0.0049 0.0053 0.0020 0.0122 0.0094 0.1000	0.0000 0.0446 0.0011 0.0458 0.0053 0.0022 0.0533 0.0170 0.0451	0.0862 0.0243 0.0002 0.1106 0.0053 0.0020 0.1180 0.0030 0.0030 0.0068	0.0768 0.1105 0.0002 0.1875 0.0053 0.0020 0.1948 0.0048 0.0068	0.1297 0.0633 0.0009 0.1939 0.0053 0.0065 0.2058 0.0132 0.0270	0.0000 0.0142 0.0002 0.0143 0.0053 0.0010 0.0207 0.0033 0.0113	$\begin{array}{c} 0.0000\\ 0.0054\\ 0.0127\\ 0.0063\\ 0.0006\\ 0.0250\\ 0.0053\\ 0.0024\\ 0.0328\\ 0.0091\\ 0.0905 \end{array}$
21mph Vehicle Type: GVWR: VMT Distribution:	LDGV 0.3571	LDGT12 <6000 0.3697	LDGT34 >6000 	LDGT (A11)	HDGV	LDDV	LDDT 0.0019	HDDV	MC 0.0063	A]] Veh
Fuel Economy (mpg):	24.0	18.6	14.3	17.3	9.6	31.8	20.0	7.2	50.0	16.3
Composite Emission Fa Composite VOC : Composite CO : Composite NOX : Composite CO2 :	2.363 13.81 1.092 369.9	i): 1.667 13.42 1.106 475.8	2.567 18.67 1.473 619.2	1.897 14.76 1.200 512.4	2.208 15.83 2.693 927.8	0.889 1.987 1.244 320.2	1.456 2.380 1.511 510.0	0.583 2.921 7.895 1419.7	2.81 14.98 1.01 177.4	1.954 13.293 1.863 563.19
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (A11)	HDGV	LDDV	LDDT	HDDV	МС	All Veh
VMT Distribution:	0.3571	0.3697	0.1268		0.0414	0.0012	0.0019	0.0957	0.0063	1.0000
Composite Emission Fa Lead: GASPM: ECARBON: OCARBON: SO4:	0.0000	i): 0.0000 0.0040 0.0006	0.0000	0.0000 0.0043	0.0000 0.0446 0.0012	0.0862 0.0243 0.0002	0.0768 0.1105 0.0002	0.1297 0.0633 0.0009	0.0000 0.0142	0.0000 0.0054 0.0127 0.0063 0.0006
SO4: Total Exhaust PM: Brake: Tire:	0.0005 0.0043 0.0053 0.0020	0.00053 0.0020	0.0006 0.0058 0.0053 0.0020	0.0049 0.0053 0.0020	0.0012 0.0458 0.0053 0.0022	0.0002 0.1106 0.0053 0.0020	0.0002 0.1875 0.0053 0.0020	0.0009 0.1939 0.0053 0.0065	0.0002 0.0143 0.0053 0.0010	0.0250 0.0053 0.0024

Page 10

Total PM: SO2: NH3:	0.0116 0.0068 0.1017	0.0119 0.0087 0.1010	0.0131 0.0114 0.0970	0.0122 0.0094 0.1000	Areawi 0.0533 0.0170 0.0451	de_3-40mp 0.1180 0.0030 0.0068	h_2008.txt 0.1948 0.0048 0.0068	0.2058 0.0132 0.0270	0.0207 0.0033 0.0113	0.0327 0.0091 0.0905
22mph Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (A11)	HDGV	LDDV	LDDT	HDDV	МС	All Veh
VMT Distribution: Fuel Economy (mpg):	0.3571 24.0	0.3697 18.6	0.1268 14.3	17.3	0.0414 9.6	0.0012 31.8	0.0019 20.0	0.0957 7.2	0.0063 50.0	1.0000 16.3
Composite Emission Fa Composite VOC : Composite CO : Composite NOX : Composite NO2 :	2.319 13.70 1.082 369.9	1.640 13.34 1.099 475.8	2.527 18.56 1.463 619.2	1.867 14.67 1.192 512.4	2.142 15.07 2.723 927.8	0.867 1.934 1.226 320.2	1.424 2.325 1.489 510.0	0.561 2.781 7.781 1419.7	2.76 14.40 1.02 177.4	1.918 13.160 1.846 563.19
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (A11)	HDGV	LDDV	LDDT	HDDV	MC	All Veh
VMT Distribution:	0.3571	0.3697	0.1268		0.0414	0.0012	0.0019	0.0957	0.0063	1.0000
Composite Emission Fa Lead: GASPM: ECARBON: OCARBON: SO4: Total Exhaust PM: Brake: Tire: Total PM: SO2: NH3:	actors (g/m 0.0000 0.0038 0.0005 0.0043 0.0053 0.0020 0.0116 0.0068 0.1017	i): 0.0000 0.0040 0.0006 0.0045 0.0053 0.0020 0.0119 0.0087 0.1010	0.0000 0.0051 0.0006 0.0058 0.0053 0.0020 0.0131 0.0114 0.0970	0.0000 0.0043 0.0006 0.0049 0.0053 0.0020 0.0122 0.0094 0.1000	0.0000 0.0446 0.0012 0.0458 0.0053 0.0022 0.0533 0.0170 0.0451	0.0862 0.0243 0.0002 0.1106 0.0053 0.0020 0.1180 0.0030 0.0068	0.0768 0.1105 0.0002 0.1875 0.0053 0.0020 0.1948 0.0048 0.0068	0.1297 0.0633 0.0009 0.1939 0.0053 0.0065 0.2058 0.0132 0.0270	0.0000 0.0142 0.0001 0.0143 0.0053 0.0010 0.0207 0.0033 0.0113	0.0000 0.0054 0.0127 0.0063 0.0006 0.0250 0.0053 0.0024 0.0327 0.0091 0.0905
23mph Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (A11)	HDGV	LDDV	LDDT	HDDV	МС	All Veh
VMT Distribution: Fuel Economy (mpg):	0.3571 24.0	0.3697 18.6	0.1268 14.3	17.3	0.0414 9.6	0.0012 31.8	0.0019 20.0	0.0957 7.2	0.0063 50.0	1.0000 16.3
Composite Emission Fa Composite VOC : Composite CO : Composite NOX : Composite CO2 :	actors (g/m 2.279 13.60 1.073 369.9	i): 1.615 13.26 1.091 475.8	2.491 18.45 1.453 619.2	1.839 14.59 1.184 512.4	2.082 14.38 2.750 927.8	0.847 1.887 1.209 320.2	1.395 2.274 1.469 510.0	0.541 2.654 7.677 1419.7	2.72 13.87 1.04 177.4	1.885 13.039 1.830 563.19
Vehicle Type: GVWR:	LDGV	LDGT12 <6000	LDGT34 >6000	LDGT (A11)	HDGV	LDDV	LDDT	HDDV	МС	All Veh
VMT Distribution:	0.3571	0.3697	0.1268		0.0414	0.0012	0.0019	0.0957	0.0063	1.0000
Composite Emission Fa Lead: GASPM: ECARBON: OCARBON:	0.0000	0.0000	0.0000 0.0052	0.0000 0.0043	0.0000 0.0446	0.0862	0.0768	0.1297	0.0000 0.0142	0.0000 0.0054 0.0127 0.0063
504:	0.0004	0.0006	0.0006	0.0006	0.0012	0.0002	0.0002	0.0009	0.0001	0.0006